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The Modern Design of Experiments for 
Configuration Aerodynamics: A Case Study 

Richard DeLoach* 
NASA Langley Research Center, Hampton, VA 23681 

The effects of slowly varying and persisting covariate effects on the accuracy and 
precision of experimental result is reviewed, as is the rationale for run-order randomization 
as a  quality assurance tactic employed in the Modern Design of Experiments (MDOE) to 
defend against such effects.  Considerable analytical complexity is introduced by restrictions 
on randomization in configuration aerodynamics tests because they involve hard-to-change 
configuration variables that cannot be randomized conveniently. Tradeoffs are examined 
between quality and productivity associated with varying degrees of rigor in accounting for 
such randomization restrictions. Certain characteristics of a configuration aerodynamics 
test are considered that may justify a relaxed accounting for randomization restrictions to 
achieve a significant reduction in analytical complexity with a comparably negligible adverse 
impact on the validity of the experimental results. 

Nomenclature 
ANOVA   = Analysis of Variance 
AoA   = Angle of Attack 
CBN   = Critical Binomial Number; minimum number of successes expected with a specified 
    confidence level if there are a given number of Bernoulli trials in which there is a  
    specified probability of success in any one trial 
CCD   = Central Composite Design 
CLmax   = maximum lift coefficient 
CRD   = Completely Randomized Design 
df   = degree(s) of freedom 
MDOE   = Modern Design of Experiments 
MS   = Mean Square 
PSP   = pressure sensitive paint 
SPD   = Split Plot Design 
SS   = Sum of Squares 
Alternative 
       hypothesis = an assertion that two levels of a variable are different 
Covariate   = an uncontrolled (“nuisance”) variable such as temperature that influences system response 
Dispersion  = a measure of the variance in a sample of random variable levels 
Factor   = an independent variable (e.g., angle of attack) 
F statistic   = ratio of a component of explained variance to the unexplained variance 
Inference Space = a Cartesian coordinate system with one axis associated with every independent variable in an  
    experiment; points correspond to combinations of independent variable levels set in  
    the experiment 
Level   = the setting of a particular variable (e.g., AoA = 2°) 
Location   = an estimate (typically, a sample average that may or may not be weighted in some way) of 
    the value of random variable 
Null hypothesis = an assertion that no difference exists between two levels of a variable 
Parameter   = a population estimate of dispersion, location, or other characteristic 
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Population  = the (generally, only theoretically achievable) totality of all relevant measurements;  
    a sample with an “infinite” number of data points 
P statistic   = probability of observing a given F statistic by chance under the null  hypothesis 
Random variable = a quantity for which the specific level is not deterministic, but is determined according  
    to a probability distribution 
Residual   = difference between a measured value and some reference (e.g., a convenient constant,  
    a sample mean, or a prediction) 
Response surface = a mathematical relationship describing system response as a function of independent variables 
Statistic   = a measure of dispersion, location, or other characteristic of a data sample 
Sample   = a set of data points limited in volume by resource constraints or other considerations 

I. Introduction 
n 1997, NASA Langley Research Center began examining the costs and benefits of applying formal experiment 
design methods to wind tunnel testing.  These techniques, described collectively at Langley as the Modern Design 

of Experiments (MDOE), differ in fundamental ways from classical wind tunnel test methods referred to in the 
literature of experiment design as One Factor at a Time (OFAT) testing.1 The OFAT method places a high premium 
on data volume and the quality of individual data points, stressing quality assurance measures that rely upon efforts 
to improve the measurement environment by reducing unexplained variance in the data.2,3 MDOE methods assume 
that real-world measurement environments are inherently imperfect, and rely instead upon tactical measures in the 
design of test matrices to achieve high quality results even in the presence of systematic and random variation in the 
measurement environment, which are recognized as inevitable.4,5,6 

While high data volume is a measure of productivity in conventional wind tunnel testing, MDOE practitioners 
view data volume as a cost metric, since increases in data volume are accompanied by increases in cycle time, direct 
operating expenses, and direct and indirect labor costs. In an MDOE test, data volume requirements are defined 
from an inference error risk management perspective, in terms of precision requirements and inference error risk 
tolerance levels.7 Ample data are specified to meet precision and inference error risk requirements defined in the 
experiment design process, but resources that would otherwise be expended by acquiring additional data beyond this 
are preserved. 

Conventional OFAT testing methods have been adequate in testing environments in which 1% precision levels 
were considered acceptable.  However, ground-testing precision requirements are now approaching the 0.1% level, 
with fractional drag-count error budgets increasingly the norm in precision performance testing.  Furthermore, the 
trend is toward ever greater emphasis on the need to stretch relatively scarce research resources.  This order-of-
magnitude reduction in acceptable error budgets, coupled with an increasing focus on full-cost accounting and other 
incentives to increase efficiency8, provides a compelling motivation to fundamentally reexamine approaches to wind 
tunnel testing and other expensive elements of aerospace research. MDOE methods were introduced to the 
aeronautical ground testing community at NASA Langley Research Center in 1997 as an element of such a 
reexamination. 

This paper presents a case study in which MDOE methods were applied to a configuration aerodynamics wind 
tunnel test in the 16-foot transonic tunnel at Langley Research Center. Configuration aerodynamics can be 
distinguished from other forms of experimental aeronautics by a particular attribute of configuration variables that is 
especially relevant from an experiment design perspective. The levels of some independent variables in a wind 
tunnel test can be changed relatively conveniently, such as Mach number and the angles of attack and sideslip.  They 
are generally changed by commands to a control system that are issued while the facility is running.  Because they 
require no interruption of wind tunnel operations, they are relatively inexpensive and convenient to change. 

By contrast, configuration variables tend to be rather less convenient to change, and relatively more labor 
intensive and time consuming. They often require physical entry into the tunnel test section, and a relatively 
extended interruption of tunnel operations to make changes to the model’s mechanical configuration.  Examples of 
such variables include control surfaces (flaps, ailerons, elevons, etc.), and various combinations of such elements as 
landing gears, strakes, speed-brakes, or other components that change the overall mechanical configuration of the 
test article.  The time and effort required to effect configuration changes makes configuration aerodynamics a prime 
candidate for the application of MDOE methods, in which the volume of data is explicitly specified at minimum 
levels that are still ample to achieve particular technical objectives.9  

MDOE practitioners seek to improve quality through operational tactics employed during the execution of the 
experiment that involve optimizing the run order of the test matrix. One such tactic is to randomize the run order to 
defend against systematic components of unexplained variance that can otherwise adversely impact the 
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reproducibility of research results. The hard-to-change nature of configuration variables makes them less amenable 
to randomization than typical model attitude or flow state variables, which can generally be changed relatively 
easily. A special type of designed experiment known as split plot design (SPD) is often prescribed when such 
restrictions on randomization are in play, but the SPD requires a significantly more complex analysis than is 
required for a completely randomized design (CRD) that features no restrictions on randomization.10,11  

This paper examines the effect that restrictions on randomization had on a configuration aerodynamics test 
recently conducted at Langley Research Center as a split plot design. An analysis that respects the restrictions on 
randomization inherent in this test is compared with an analysis that ignores such restrictions, in order to quantify 
the penalty associated with this significant simplification in the analysis.  Some unanticipated insights were achieved 
regarding the general nature of conditions under which randomization restrictions must be rigorously taken into 
account. Practical circumstances are described under which ignoring such restrictions may have no significant effect 
on the analysis of experimental results. 

The sections that follow will review systematic variations and their effects on sample means and variances, 
which compromise their utility as reliable estimators of corresponding population parameters. The effectiveness of 
randomizing set-point order as a defense against the effects of such systematic error is discussed. The quality 
implications of practical restrictions on randomizing hard-to-change variables are reviewed and the special 
complexity of an analysis that rigorously respects restrictions on randomization is outlined.  A specific configuration 
aerodynamics case study is used to examine costs and benefits of practical options for coping with restrictions on 
randomization. The discussion section reflects on general features of an experiment that may impact how 
randomization restrictions can be treated. Brief concluding remarks summarize the key findings. 

II.  Systematic Components of Unexplained Variance 
Unexplained systematic variation is caused by persisting effects such as temperature changes, which vary over 

time periods that are not short compared to the dwell time associated with a typical data structure such as a pitch 
polar. Because of the relative time scales, the researcher cannot rely upon simple replication to cancel out these 
systematic, non-random errors. They behave as slowly varying bias errors, which are often large compared to 
normal chance variations in the data, and which are also much harder to detect and to quantify than random error. 

When systematic variation is present, the experimental errors in individual measurements are not independent of 
each other.  For example, if a trend of increasing temperature causes the most recent measurement to be too high so 
that its experimental error is characterized as “positive,” it is likely that the next measurement will be positive as 
well.  That is, there exists some correlation between measurement errors, and they cannot be said to be independent.  
We say in such circumstances that the “random sampling hypothesis” is not valid. 

Researchers often believe that their measurements are independent, under the good-faith assumption that as long 
as standard measurement procedures are followed, no additional effort is required to ensure that the random 
sampling hypothesis can be reliably invoked. As Box, Hunter, and Hunter12 put it, “[Researchers] frequently make 
the assumption of independence at the beginning of their writings and rest heavily on it thereafter, making no 
attempt to justify the assumption, even though it might have been thought that ‘a decent respect to the opinions of 
mankind requires that they should declare the causes which impel them’ to do so.  The mere declaration of 
independence, of course, does not guarantee its existence.” 

Unfortunately, covariate effects can induce correlation in experimental data without the researcher’s knowledge. 
Covariates are factors such as frictional heating in the test section of a wind tunnel that can influence the bias and 
sensitivity calibration constants of force balances and inertial angle of attack sensors, or subtle variations that may 
occur in flow angularity over time, or any of a myriad other factors that may influence forces, moments, and other 
response variables in a test, but that are not under the control of the researcher. They are “nuisance variables,” the 
effects of which are not practical to eliminate entirely even when their presence is known. 

Unknown covariates are a threat to the reproducibility of research results because their influence can vary from 
test to test.  A polar acquired at the end of two shifts of near-continuous mid-summer running is likely to have been 
influenced by a completely different temperature environment than an ostensibly identical polar acquired at the start 
of the first shift of a mid-winter test, for example. 

Relatively mild, slowly varying covariate effects can induce a significant bias in the sample mean, and the 
correlated residuals that result from time-varying covariate effects can significantly bias the variance in the 
distribution of sample means, as will be demonstrated below. Under such circumstances, these sample statistics are 
not reliable estimators of the population parameters they are intended to represent. This is a very serious situation, in 
that the raison d’ etre for experimental research is to make reliable estimates of the population parameters that 
resource limitations prevent us from measuring directly. We must rely instead upon sample statistics from a finite 
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volume of data that is limited always by a variety of practical considerations. Furthermore, because correlated 
residuals induce a bias error and not a random error, the acquisition of data in high volume cannot be relied upon to 
ameliorate the effect, as the errors do not cancel. In fact, when each data point carries a systematic component of 
unexplained variance, additional data points can simply exacerbate important aspects of the problem, as will be seen 
below. 

A. Effect of Systematic Variation on Sample Means 
If there is a time-dependent bias error in the ith measurement of an n-point sample so that yi = y0i +bi(t), where y0i is 
the measured value in the absence of bias error and bi(t) is the bias error at time t, then the sample mean is 
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is a bias error in the estimate of the sample mean that depends on how the bias errors in the individual measurements 
depend on time. 

Consider a pre-stall lift polar acquired in the presence of a persisting systematic effect that causes earlier lift 
measurements to be biased somewhat lower – and later lift measurements to be biased somewhat higher – than they 
otherwise would be. (We may consider individual measurements made at a given angle of attack as a special case of 
Eq. (1) in which i=1; i.e. a single-point “sample.”) 

If the AoA set-points are scheduled in sequential order, starting with the lowest AoA level and monotonically 
increasing each subsequent AoA level in defined increments as is the usual custom, the acquired polar will be 
rotated counterclockwise with respect to the polar that would have been acquired otherwise, in the absence of a 
systematically changing error. Figure 1 shows 
this effect schematically. 

Rotation in the biased polar of Fig. 1 is only 
apparent by comparison with the true polar 
presented in the same figure. The true polar is 
inconveniently absent in most practical 
circumstances, and since there is nothing about 
the biased polar itself to suggest that it is 
deficient, the effects of systematic error tend to 
go undetected unless the polar is replicated. But 
because time-varying bias errors are a function 
of local conditions that are not likely to 
reproduce identically from test to test, the 
researcher who replicates a polar may be left 
with two unmatched polars with no way to 
determine which (if either) accurately depicts 
the lift dependence on AoA. 

 
 
 
 

 
 
Figure 1. Sequential lift polar rotated by effect of time-
varying bias error. 



 
American Institute of Aeronautics and Astronautics 

 

5

B. Effect of Systematic Variation on Sample Variance 
The previous section demonstrated that persisting covariate effects can induce time-dependent bias errors in the 

individual measurements of a sample of data that result in a bias in the mean of that sample. Such effects also 
introduce correlation among the measurement errors, which results in a bias in the sample variance as well as in the 
sample mean. To see this, recall the following general error propagation formula13,14 by which the variance in a 
function of multiple variables can be estimated from the variance in each of those variables: 

If 

 ( )nxxxfy ,,, 21=  (4) 

is a known (or assumed) function of n independent variables, xi, then 
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where σy is the standard deviation in the response variable y (square root of the variance in y), σx is the standard 
deviation in the independent variable x, and ρuv is the correlation coefficient between variables u and v.   

Let us apply Eq. (5) to the following simple function of the sample mean: 

 1 2 nny y y y= + + +  (6) 

Note that a great simplification results from the fact that in this instance all the partial derivatives of Eq. (5) are 
just 1. We further simplify the application of Eq. (5) to Eq. (6) by dropping all the subscripts on the σ values under 
the assumption that the standard deviation in each measurement is the same, and we introduce the notation ρm to 
represent the correlation coefficient for two measurements separated by m time intervals.  For example, ρ1 
represents the correlation coefficient for two measurements taken one measurement apart in a time series (that is, in 
immediate succession), ρ2 represents the correlation coefficient for two measurements taken two measurements apart 
(that is, with one intervening measurement), and so on.  For a given m, all such pairs are further assumed to have the 
same correlation coefficient.  With these simplifications, applying Eq. (5) to Eq. (6) results in the following: 
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We are interested in the variance in the sample mean itself, rather than the function of the sample mean 
represented by Eq. (6).  If we apply Eq. (5) to the following self-evident relationship: 
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Inserting Eq. (7) into Eq. (9): 
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or, after rearranging terms: 
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Note that in the absence or correlated errors, the ρm are zero for all m, and Eq. (11) reduces to the familiar 
expression outside the bracket, representing the variance in the sample mean when all measurements are 
independent.  We see that Eq. (11) has this simple form: 

 ( ) ( ) ( )00 Var yVar y Var y B= +  (12) 

where ( )0yVar  represents what the variance in the sample mean would have been in the absence of systematic 
covariate effects and 

 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ −= ∑

−

=
m

n

m
yVar n

mn
n

B ρσ 1

1

2
2

0
 (13) 

is a bias error in the estimate of variance in the sample mean that depends on how errors in the individual 
measurements of a time series are correlated.  The weighting represented by the (n-m)/n term within the summation 
of Eq. (13) is greatest for small m, corresponding to measurements separated by the smallest time intervals.  Larger 
values of m correspond to measurement pairs separated by intervening measurements. 

Random errors tend to cancel more and more completely as more and more data are acquired. However, Eq. (13) 
reveals that the acquisition of additional data does nothing to ameliorate the effect that correlated residuals have on 
variance bias error.  On the contrary, since the sign of the correlation coefficient in Eq. (13), ρm, tends to be the same 
for all m (i.e., the bias errors in successive data points tend in the same direction in the presence of persisting 
covariate effects), when a degree of correlation exists among all point pairs, the errors do not cancel and the 
additional data points simply exacerbate the problem by providing more non-canceling terms in the summation of 
Eq. (13).   

C. Impact of Biased Sample Statistics 
Unbiased sample means are obviously desirable in any experiment because the sample mean is assumed to be an 

unbiased estimate of the population mean we seek to discover, and a bias in the sample mean per Eq. (2) will 
represent an error in estimating that population mean. The variance of the distribution of sample means is also a 
crucial statistic because it is key to assessing uncertainty. A bias in this quantity per Eq. (11) will result in an 
improper quality assessment.  

Such unbiased sample statistics are important in designed experiments for additional reasons. The analysis of a 
designed experiment generally involves objective decisions about whether the magnitude of some effect is 
sufficiently large to distinguish it from zero.  A null hypothesis is formed which asserts that the effect is in fact zero.  
This hypothesis is only rejected if the effect is located sufficiently far from zero that to do so entails an acceptably 
low risk of error, given the degree of dispersion (variance) in the estimate of the effect’s location (mean).  
Significant bias errors in estimates of either the location or the dispersion of an effect can complicate the decision of 
whether or not to reject its null hypothesis, and lead to inference errors. An example will clarify this point. 

Consider a response surface experiment design common in wind tunnel testing, in which the intent is to 
mathematically express system responses such as forces and moments in terms of the independent variables that 
influence them, such as angle of attack and Mach number.  A generalized mathematical relationship is hypothesized 
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(called a response surface function) – typically a low-order polynomial comprising a Taylor-series representation of 
the response over some restricted range of independent variable levels. (Often in practical applications the restricted 
range over which a Taylor series of modest order can adequately approximate the system response is insufficient to 
span the whole independent variable range of interest. In such cases it is customary to represent the response over 
the entire range of independent variables as a piecewise-continuous response surface, consisting of multiple adjacent 
response surfaces.15,16 The response surface modeling process entails an objective procedure by which decisions are 
made about which terms to include in the response model and which terms to drop. 

Coefficients for the terms in the proposed response model are determined from experimental data using 
regression or some other means. A null hypothesis is formulated for each term in the model, asserting that the true 
value of its coefficient is zero and that the term does not belong in the model. The uncertainty in estimating each 
coefficient is estimated as well as its value. If the regression coefficient for a given term is located sufficiently far 
from zero given the dispersion in its estimate, the null hypothesis for that coefficient is rejected and the term is 
retained in the model.  Otherwise the term is dropped on the basis that it is located too close to zero to be resolved as 
a real effect with a sufficiently high degree of confidence, given the dispersion in estimating it. 

Equation 14 represents an initial reduced cubic response model for lift coefficient as a function of angle of 
attach, α, and Mach number, M, as formulated in a recent wind tunnel test at Langley Research Center. 

 MbMbMbbMbMbbbC oL
2

7
2

6
2

5
2

4321 ααααα +++++++=  (14) 

This order of model was initially conjectured from experience with similar aircraft tested over the same range of 
independent variables; α from -5º to +5º and Mach number from 0.35 to 0.80 in this case. We expected the lift 
coefficient to be dominated by a first-order dependence upon angle of attack in this pre-stall range, with some slight 
curvature at the higher α end reflecting the start of an approach to CLmax.  We did not expect the lift coefficient to 
exhibit any higher order dependence on Mach number than for angle of attack. For this reason, the initial mixed 
cubic model was expected to be of more than adequate order to represent the data, although the fit of any such 
response model to the data is always subject to verification. If there is a need for a more complex model to 
adequately represent the data, this is generally revealed through an analysis of residuals and possibly confirmation 
points – data acquired not to fit the model but to test it.  That is, a certain number of Mach-alpha points might be 
held in reserve, to compare with predictions based on the fitted response model. 

The bi in Eq. (14) are numerical coefficients that were determined empirically by fitting this equation to a set of 
lift data acquired over the prescribed range of angle of attack and Mach number.  Values that were estimated for the 
coefficients in Eq. (14), as well as values of the standard error (“one-sigma”) in estimating each coefficient, are 
given here. 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2 2 2 2

10,000 43.6 8.5 1881.8 10.4 1.4 10.4 75.0 10.5

37.4 14.9 11.6 7.7 8.8 7.7 8.0 14.8
LC M M

M M M

α α

α α α

× = ± + ± + ± + ±

− ± − ± − ± + ±
 (15) 

The “10,000” multiplier facilitates a clearer comparison of the relative magnitudes of the coefficients, and 
converts the otherwise dimensionless lift coefficient units to “counts”, where one count = 0.0001.  The α and M 
independent variables have undergone a centering and normalizing transformation to convert them to numbers in the 
range of -1 to +1 to facilitate the regression computations. 

Terms with insignificant (near-zero) coefficients could remain in this response model without having a 
significantly adverse effect on the value of response predictions, but it is very desirable to identify them and drop 
them from the model for two reasons.  A clearer insight into the underlying process can be achieved if the response 
model is not cluttered by irrelevant terms, but even more importantly, the uncertainty in response predictions made 
by models such as Eq. (14) depends on the number of terms in the model. The average prediction variance is directly 
proportional to the number of terms, independent of the order of the model17: 

 2)ˆ( σ⎟⎠
⎞⎜⎝

⎛= n
pyVar  (16) 

where p is the number of parameters in the model (including the b0 intercept term), n is the number of data points 
used in the regression, and the term on the left is the prediction variance averaged over all the points in the 
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regression.  There is thus some considerable 
pressure to eliminate as many unnecessary 
terms as possible, to clarify the model and 
improve the precision of its predictions. 
Specifically, we seek to eliminate small-
coefficient terms that contribute more to the 
prediction uncertainty than to the prediction 
itself. 

 An objective decision to either retain or 
reject each term in the response model is 
made by appealing to a normal “reference 
distribution” centered on zero with a standard 
deviation reflecting the standard error in 
estimating the coefficient.  Figure 2 illustrates 
the reference distribution for Eq. (14). Each 
vertical line in this figure represents a 
coefficient from Eq. (15), expressed in 
multiples of its standard deviation. The 
dispersion in the reference distribution 
reflects the resolution of the experiment. 
Regression coefficients outside the rectangle 
centered on zero are located sufficiently far 
from zero to reject the null hypothesis that their coefficients are insignificant, and to do so with no more than a 5% 
probability of an error in such an inference due to chance variations in the data. That is, we claim with at least 95% 
confidence that the coefficients outside the rectangle are non-zero and should be retained in the response model.  
The true value for coefficients located within the rectangle may be zero, with a non-zero numerical value 
attributable simply to random experimental error.  Or they may be non-zero and simply small in magnitude.  In 
either case, we are unable (with at least 95% confidence) to reject the null hypothesis for such coefficients given the 
dispersion in their estimates as represented by the normal reference distribution of Fig. 2. 

For this particular response function, we note that three of the seven terms in the model (beyond the constant 
intercept term) have coefficients located sufficiently far from zero to reject the null hypothesis, and the remaining 
four terms are too close to zero to be adequately resolved, where again “adequately” was defined for this test to 
mean “with at least a 95% probability of a valid inference.”  In particular, the regression coefficient for the linear α 
term is seen to be over 180 standard deviations to the right of zero, leaving little doubt that this term is statistically 
significant. The quadratic α term is much smaller, suggesting only modest curvature, but it is still located far enough 
away from zero to satisfy our 5% maximum inference error risk criterion. The coefficient for an interaction term 
involving α and Mach is over seven standard deviations to the right of zero, comfortably justifying a rejection of the 
null hypothesis for this term. The presence of this term in the response model suggests that the slope of the 
(essentially) linear dependence of CL upon α is greater for higher Mach numbers than for lower Mach numbers.   
Rewriting Eq. (14) to reflect only the significant terms we have: 

 2
431 ααα bMbbbC oL +++=  (17) 

This gives a much less cluttered view than Eq. (14) of the dependence of lift on angle of attack and Mach 
number over the α and Mach ranges for which this relationship was developed.  Also, per Eq. (16), since this 
response model features half the number of terms of Eq. (14) – four instead of eight – the average prediction 
variance is cut in half. 

Note also that there is as much information about the underlying physical process to be gleaned from the 
insignificant terms as from the significant ones.  In this instance, it is interesting to note that while Mach number 
influences the rate at which lift changes with angle of attack (via the interaction term), there is no net average 
dependence of lift on Mach number (this may be attributable to the symmetric ±5º α range centered on α=0) and 
there is no curvature in Mach as there is in α.  The fact that the α2M term is insignificant reveals that there is no 
interaction between Mach number and the curvature term for α.  This suggests that the same nonlinearity in α that is 
observed at lower levels of the range of Mach numbers tested is also observed at the higher end of that range.  A 

 

 
Figure 2. Reference distribution for detecting significant 
factors in a response surface model for pre-stall lift 
coefficient as a function of angle of attack (α) and Mach 
number (M). 
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subject-matter specialist can achieve many such interesting insights into the underlying physics by examining how 
“the chaff is separated from the wheat” when such response surface model coefficients are objectively determined to 
be significant or insignificant. 

Note how this process of discovery depends on unbiased estimators of the sample means (required for reliable 
coefficient estimates) and on unbiased estimators of the variance in the distribution of sample means (required for a 
reliable reference distribution that is key to distinguishing between significant and insignificant effects).  Persisting 
covariate effects that were demonstrated above to bias the estimates of both means and variances can play havoc 
with this process, and can result in response models that are incapable of reliably predicting responses for 
independent variable combinations of interest. 

Consider the quadratic Mach term from Eq. (15), seen in Fig. 2 not to be located sufficiently far from zero for its 
null hypothesis to be rejected. A relatively subtle bias in the estimate of this coefficient – enough to increase its 
small magnitude by about a third – would have been sufficient to reject its null hypothesis and claim some quadratic 
Mach dependence for lift.  Very little bias is needed for such an occurrence – enough to correspond to a shift in lift 
coefficient of less than 0.001.  The pure error standard deviation for this test was 0.002, so this is a bias shift of only 
“half a sigma,” and a small sigma at that. 

Likewise, consider the coefficient of the quadratic angle of attack term, seen in Fig. 2 to be statistically 
significant (located far enough from zero to reject the null hypothesis with 95% confidence), but just barely so.   A 
small bias in the variance of the reference distribution per Eq. (11) would be sufficient to erroneously infer that the 
null hypothesis for the quadratic α term should not be rejected.  For example, an increase of about 30% in the “±2σ” 
acceptance criterion interval half-width of the reference distribution would be sufficient to reverse the inference for 
the quadratic α term.  This translates into a numerical value of about 0.35 for the dimensionless summation term in 
Eq. (11), which can be achieved under correlation conditions so mild that a given measurement is influenced only by 
the preceding measurement and none earlier (ρm=0 for m>1, a so-called “lag-1 autocorrelation”), and that ρ1=0.4, a 
very mild degree of correlation indeed. Such a small level of correlation would have been sufficient to miss the 
subtle curvature in the α dependence on lift coefficient and to introduce errors in the prediction of lift that would not 
have included contributions from the quadratic α term of Eq. (17). 

In this example, it is unlikely that any level of realistic systematic variation could have masked the statistical 
significance of the first-order α term in the response function for lift (180+ standard deviations away from zero!) 
and the alpha-Mach interaction at 7+ standard deviations away from zero would also have been hard to obscure.  But 
somewhat more subtle effects such as the curvature of lift with α could easily have been masked by bias in the 
sample statistics induced by a significant systematic component of unexplained variance.  Likewise, totally spurious 
effects could have been introduced into the description of lift’s dependence on Mach number and angle of attack. 

III. Quality Assurance Through Randomization of Set-Point Order 
The previous sections have established that proper inferences about system responses can be compromised as a 

result of long-period response variations induced by systematically changing covariates that bias the estimates of 
sample means and variances.  Furthermore, the level of systematic unexplained variance and the degree of correlated 
residuals required to induce erroneous inferences is very subtle.  This suggests a certain underappreciated urgency 
for the need to eliminate systematic components of unexplained variance from experimental data by proactively 
engaging in quality assurance tactics designed to ensure the random sampling hypothesis. 

A number of such efforts have been focused in the past on attempts to improve the measurement environment in 
certain large-scale facilities such as wind tunnels, by identifying systematic error sources (“assigning causes” to 
systematic error) and physically wringing those sources of systematic error out of the system.  Of course this should 
be done to the full extent that it is practical to do so.  However, one can only address systematic error sources that 
are known, and unfortunately it is not unlikely that a number of such sources are in play at any given time without 
our knowledge of them.  In any case, as it is impossible to prove a negative, it is simply not possible to guarantee a 
state in which there are no sources of systematic variation in a wind tunnel, no matter how sincerely we strive to 
identify and eliminate them. 

Fortunately, a conceptually straightforward quality assurance tactic exists by which the random sampling 
hypothesis can be induced, even in the presence of slowly varying covariate effects. This tactic, introduced by 
Ronald Fisher and his peers early in the 20th century18, consists of randomizing the set-point order of data acquired 
in a time series to effectively convert unknown and undetected systematic components of unexplained variance into 
simple random error that is easy to detect and which can be addressed by the simple tactic of replication. 

To illustrate how randomization can help in a wind tunnel test, let us revisit Fig. 1.  This figure illustrates a lift 
polar that has been rotated counterclockwise under the influence of transient systematic phenomenon that had the 
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effect of biasing earlier measurements low 
and later measurements high.  A slowly-
varying change in test-section temperature 
could have this effect, through the influence 
in might have on calibration constants for 
onboard force and model attitude 
instrumentation, for example. 

Now consider the effect of simply 
randomizing the set-point order in which the 
same AoA levels are set.  The earliest setting 
might be a relatively large angle or a 
relatively small one, determined completely 
at random, and likewise for all subsequent 
measurements.  AoA levels that are set earlier 
will be biased somewhat low in this example, 
and those set later will be biased somewhat 
high. The errors would display a systematic 
time dependence if plotted in run order, but 
they would be randomly distributed if 
presented in order of angle of attack.  This is 
because each of the lower angles will have been just as likely to have been set earlier (when the systematic error was 
negative) as later (when the systematic error was positive), and likewise for the higher angles. The errors will be 
randomly distributed about a mean value that more closely represents the true functional dependence of lift upon 
AoA than if the AoA levels had been set sequentially, effectively confounding the AoA effect on lift with whatever 
effect is causing the systematic error. 

Figure 1 was actually generated from a simulation that represented lift coefficient as a simple first-order function 
of one variable – angle of attack.  Random error was added via a Monte Carlo simulation that featured random 
selections from a normal distribution with mean of zero and standard deviation of 0.005, with all the experimental 
errors then correlated with a lag-1 autocorrelation coefficient of magnitude 0.4.  The polar labeled as “truth” 
consisted of the original first-order function with no error components added, and the rotated polar resulted from a 
linear regression on a set of data consisting of the base function with random and systematic error components 
added, acquired in a monotonically increasing sequence of angle of attack set-points.  This procedure ensured that 
AoA effects were completely confounded with the covariate effects responsible for the correlation, and resulted in 
the rotation of the polar relative to the “true” polar. 

Figure 3 is identical to Fig. 1, except for a curve fit to data acquired with the angle of attack set-point order 
randomized. The randomization of set-point order has ensured that some of the lower-alpha set-points were acquired 
early, when the bias error was negative, and some was acquired late, when the bias error was positive, and likewise 
for the higher-alpha set-points. The result was a randomized distribution of former bias errors about the true AoA 

dependence. 
Figure 4 presents the residuals from Fig. 3 

in two ways.  The open circles represent the 
residuals plotted in order of angle of attack. 
These exhibit a featureless swath centered on 
zero, indicating pure random error. The filled 
circles show the residuals plotted in the order 
the randomized set-point data were acquired.  
That is, the filled circles are residuals from 
points acquired in time-order. Note the 
pronounced lower-left-to-upper-right trend in 
the time-series of residuals, indicating clearly 
that data acquired early and data acquired late 
were biased in opposite directions due to the 
time-varying trend that was in fact simulated 
n this data set. But notwithstanding the 
pronounced trend in the residuals plotted 
against time, there is only a random 

 
 
Figure 3. Effect of systematic variation on a randomized lift 
polar.

 
 
Figure 4. Residuals from randomized polar in order of alpha 
and in run order (by time). 
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distribution of errors in the residuals plotted against angle of attack, clearly illustrating how randomizing set-point 
order effectively converts systematic variation to random error. 

We note in passing that there are certain practical advantages to monotonic AoA schedules that have to do with 
the fact that flow attaches to the wing in different ways when the angle of attack is increased than when it is 
decreased.  This so-called “hysteresis effect” can cause the forces and moments on a wind tunnel model positioned 
at a given angle of attack to be different if that AoA level was approached from below than if it was approached 
from above.  Hysteresis can be avoided in a randomized schedule of AoA settings by a policy that requires negative 
AoA transitions to be preceded by a “home state setting” consisting of an AoA level lower than the smallest one to 
be set for data acquisition.  In this way, all AoA data settings are acquired after a positive transition in AoA. 

We also note in passing that randomization of test matrices can be viewed as an impediment to productivity by 
those who equate wind tunnel productivity with data volume. A randomized polar takes longer to execute than a 
sequential polar, typical by a factor of 1.5 to 2.5.  However, as alluded to in the introduction, designed experiments 
compensate for reduced data acquisition rates by minimizing the volume of data necessary to achieve technical 
results. Significant improvements in both quality and productivity have in fact been achieved when designed 
experiments have been employed in practical ground testing problems. A more detailed general discussion is beyond 
the scope of the current paper, but the interested reader can consult other references for more information.19,20  

IV. Restrictions on Randomization and the Split Plot Design 
A significant portion of the unexplained variance in a high-precision data sample can often be attributed to 

slowly varying covariate effects that are subtle yet persistent, and which introduce what is in effect a time-dependent 
bias error than can cause sample means to vary systematically over relatively long time periods. There is an 
imperative to randomize the run order of a test matrix in order to ensure that experimental errors in points acquired 
in such an environment are all independent of each other.  This is a necessary condition for sample statistics, such as 
the means and variances of random variables estimated in an experiment, to be unbiased estimators of the population 
parameters they are intended to represent. Absent such randomization, even the most subtle of systematic error 
effects can overwhelm the tiny error budgets that are typically associated with today’s high-precision experimental 
aeronautics investigations. This can result in improper inferences and experimental results that are difficult to 
reproduce with required precision. 

The need to randomize set-point order as a quality assurance tactic conflicts with certain attributes of 
configuration variables that were mentioned above.  Specifically, configuration variables can be described as “hard 
to change” variables, the levels of which are generally not practical to randomize from point to point.  Once the 
configuration of a wind tunnel model has been established by making the necessary mechanical changes to it, the 
tunnel is typically secured for running and only “easy to change” variables such as angle of attack and Mach number 
are altered until tunnel operations are again interrupted to permit the next configuration to be established.  It is 
possible to randomize the set-point order of easy-to-change variables, and in fact the practical capability to 
randomize set-point order serves as a working distinction between variables that are classified as easy-to-change and 
those that are classified as hard-to-change. 

The presence of hard-to-change variables necessitates certain modifications in the design and analysis of an 
experiment to accommodate them. These modifications are often implemented through a special designed 
experiment commonly used to cope with restrictions on randomization, called the Split Plot Design (SPD).  This 
section will briefly introduce key features of split plot designs that highlight certain undesirable elements such as the 
complexity they introduce into the analysis of experimental data. 

Split plot designs are so-named because they were developed originally in agricultural applications involving 
plots of land that featured randomization restrictions. For example, in an experiment to examine potato yield for 
three varieties of potato plant and two types of fertilizer, it would generally be more practical to distribute the three 
plant varieties among randomly selected subplots in two fields that are each treated with one type of fertilizer, than 
to try to fertilize each individual plant with one fertilizer or the other, selected at random. (Envision the fertilizer 
being applied by crop duster!) 

Field A might be surveyed into 36 equal subplots for example (perhaps a six-by-six array of subplots), with 
potato variety #1 assigned to a third of them (12 of the 36 subplots selected at random) and the other two varieties 
likewise assigned at random to a third of the subplots.  This random assignment of plants to subplots within a field 
defends against the possibility that yield differences might be due to large subsections of the field having different 
soil types, or moisture levels, or degrees of insect infestation, say.  When the plants are assigned to subplots 
distributed randomly within the field, each plant type is just as likely to experience rich soil as poor, moist soil as 
dry, and so on, with any net yield differences across plant types attributable only to the plant-type differences 
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themselves. Field B would be planted similarly, and because it is convenient to do so, all of Field A would be treated 
with one type of fertilizer and all of Field B would be treated with the other. 

We call the two fields “whole plots” and we describe “fertilizer type” as a whole plot variable.  “Plant type” is a 
subplot variable.  Note that it is necessary to replicate this design to avoid confounding the whole plot variable effect 
with what are called “block effects.”  “Field A” might simply be superior to “Field B” for growing potatoes, no 
matter which fertilizer is applied.  So we would want to plant multiple pairs of fields, deciding at random which of 
the two fields in each replicate to treat with one fertilizer type and which to treat with the other.  That is, we would 
want to randomize the assignment of the whole plot variable (fertilizer) to whole plots (fields) just as we randomized 
the assignment of the subplot variable (potato variety) to subplots within each field. 

This need for two types of randomization – whole plot and subplot – makes the analysis of split plot designs 
more complicated than the analysis of completely randomized designs that have no restrictions on randomization.  A 
CRD features a single reference distribution by which the significance of all independent variable effects are judged.   
Because a SPD features two separate whole plot and subplot randomizations, two different reference distributions 
are required to assess separately the significance of whole plot effects and subplot effects. Interaction effects 
involving whole plot variables and subplot variables present a further complication. 

The complication introduced by the separate randomization schemes that hard-to-change variables impose can be 
illustrated with an experiment that was recently executed at Langley Research Center in to assess the effect of 
pressure sensitive paint (PSP) on measurements of forces and moments.  Pressure sensitive paint undergoes certain 
changes proportional to pressure that can be recorded optically to reveal global pressure distributions on the surfaces 
of wings and other aircraft components during a wind tunnel test. However, there is some potential that the 
application of the paint to a wind tunnel model could bias sensitive aerodynamic force and moment measurements, 
especially drag. 

The actual PSP experiment was somewhat complicated, but to reduce its description to the simplest elements 
needed to explain split plot designs, imagine that the experiment involved only two independent variables, P and M.  
P is a binary state variable that assumes one level (+1, say) when the state of the model is “painted” and the other 
level (-1, say) when the state of the model is “clean” (no PSP).  M is Mach number, which for the purpose of this 
discussion will also assume only two levels, a relatively low Mach number and a relatively high Mach number.  The 
objective of this very simple test is therefore to assess the change in drag due to pressure sensitive paint for low and 
high Mach numbers at fixed levels of all other variables such as angle of attack and angle of sideslip. 

In the simplest of execution plans, drag measurements would be made at the two Mach numbers when the model 
is clean and repeated when the model is painted.  A total of four data points would be acquired in this simplified 
experiment, each contributing one degree of freedom to the analysis. One degree of freedom (df) would be 
consumed by the mean of the data (the intercept term of any predictive model to be developed from the data), with a 
total of three degrees of freedom remaining to assess all independent variable (paint and Mach) effects and the 
uncertainties in their estimation.  Table 1 reveals the degrees of freedom available for this simple experiment. 

One df is consumed by the paint effect, which quantifies the 
change in drag in going from a clean model to a painted model, 
averaged over Mach.  One df is consumed by the Mach effect, 
quantifying the change in drag in going from low Mach to high 
Mach, averaged over paint states.  One df is associated with the 
Mach x Paint interaction effect, which quantifies any change in 
paint effect that might occur in going from low Mach to high 
Mach.  There are no degrees of freedom remaining to assess the 
uncertainty of any of these effects estimates, and thus there is 
insufficient information to construct a reference distribution such 
as the one used in Fig. 2 to objectively infer the significance of 
various experimental results. 

It would be necessary to replicate this experiment to ensure 
that some df are available to establish a reference distribution after all the independent variable effects are estimated.  
This is important because the paint effect would be unlikely to be estimated as exactly zero even if there really was 
no effect, simply due to random experimental error.  Absent a reference distribution reflecting the intrinsic precision 
of the experiment, we cannot objectively decide – with a prescribed level of confidence – whether the null 
hypothesis for the paint effect should be rejected or not.  (The null hypothesis for the paint effect states that there is 
no difference in drag between the painted and unpainted cases.)  This absence of a reference distribution is 
especially problematic if the paint effect is subtle, as it was expected to be (and as it in fact turned out to be). 

Source Degrees of 
Freedom 

Paint 1 
Mach 1 

Mach x Paint 1 
Error 0 
Total 3 

 
Table 1. Degrees of freedom for PSP 
experiment: No replication and no account 
of restriction on randomization. 
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Replicating the PSP experiment r times would provide a 
total of 4r df, or 4r-1 df beyond the one consumed in 
estimating the mean. The df budget for the case of r 
replications of the basic PSP experiment is shown in Table 2. 

The replicated experiment features 4(r-1) error df that can 
be used to estimate the variance of a reference distribution.  
We would use this distribution to objectively assess the 
magnitude of the three potential effects – Paint, Mach, and 
Paint x Mach interaction – by determining if they can be 
reliably distinguished from zero given the intrinsic variability 
of the data.  The intrinsic variability of the data is reflected by 
the unexplained variance of in the 4r data points acquired in 
this test (i.e., that portion of the total variance that cannot be 
explained by the two main effects – paint and Mach – and the 

interaction between them).  We would conduct an analysis similar to the one represented graphically in Fig. 2, by 
which we objectively decided whether or not each regression coefficient in Eq. (14) was significant.  In the PSP 
experiment, we would determine which of the three effects are located far enough away from zero to distinguish 
them from noise with an acceptable level of confidence – 95%, say. 

Unfortunately, the df budget presented in Table 2 ignores an important restriction on randomization imposed by 
the fact that the paint state of the model cannot be changed conveniently. Because paint state is such a hard-to-
change variable, it is much easier to set all Mach levels of interest for one paint state first and then the other, than to 
set 4r Mach/Paint combinations in random order as we would with a completely randomized design (CRD) of this 
experiment. We would still wish to randomize set point order as much as possible within this restriction on 
randomization, by determining at random (by coin toss, say) the order that the high and low Mach numbers are set 
for a given paint state, and by also randomizing the order that the paint states are run.  For example, if r = 5, we 
would replicate the 4 combinations of low/high Mach with clean/painted model a total of 5 times, yielding 20 runs.  
Randomizing both Mach levels within a single paint-state level and then randomizing the order that the paint states 
are executed within a given replicate would make this a split plot design. 

The df budget for a split plot design of the PSP experiment is more complicated than the one in Table 2 that 
neglects restrictions on randomization and assumes a CRD.  The hard-to-change nature of the paint state variable in 
the PSP experiment results in two types of randomization and therefore two categories of error df, as indicated in 
Table 3. 

As a specific implementation of the PSP experiment as a split plot design, let us assume that we replicate the 
PSP experiment on each of five consecutive days so that r = 5 in Table 3.  That is, on Monday we flip a coin to 
decide whether to test the painted model first or the clean model first, and then flip a coin again to decide whether to 
run the low-Mach case first or the high-Mach case. We measure the drag for the Paint/Mach combination so 
determined, and then measure the drag at the other Mach number. We then prepare the model for the other paint 
state for that day (by removing the paint if the first paint state was “painted” or by painting the model if the first 
paint state was “clean”).  We again run the two Mach number settings in a run order determined by coin toss, and 
repeat this same process on Tuesday, Wednesday, Thursday, and Friday, using coin tosses on each day to determine 
the order that the paint states will be run, and 
the order that the Mach numbers will be set for 
each paint state. 

We will now have drag measurements for 
two Mach numbers at each of two paint states 
on each of five days, for a total of 
2 x 2 x 5 = 20 runs.  As before we lose one df to 
an estimate of the mean of this data sample, 
leaving a total of 19 df to assess the 
independent variable effects and the 
uncertainties (reference distributions) needed to 
test their significance. 

We test the whole plot effect (Paint) against 
the r-1 df paint/replication whole plot error term 
in Table 3 as follows: For each of the five days, 
subtract the average of the drag measurements 

Source Degrees of Freedom 
Replications r-1 

Paint 1 
Paint x Replication r-1 (whole plot error) 

Mach 1 
Mach x Paint 1 

Mach x Replication r-1 (subplot error) 
Mach x Paint x Replication r-1 (subplot error) 

Total 4r-1 
 
Table 3. Degrees of freedom budget for PSP experiment 
replicated r times with restriction on randomization taken 
into account. 

Source 
Degrees of 
Freedom 

Paint 1 
Mach 1 

Mach x Paint 1 
Error 4(r-1) 
Total 4r-1 

 
Table 2. Degrees of freedom for PSP 
experiment replicated r times: Restriction on 
randomization not taken into account. 
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made at both Mach numbers with the clean model from the average of the drag measurements made at both Mach 
numbers with the painted model. This provides estimates of the average paint effect for each of the five days.  The 
mean of these five numbers is the average paint effect we seek. 

To determine if the magnitude is significant, compute the standard deviation for these five paint-effect estimates 
and construct a t-statistic by dividing the mean by this standard deviation. This will express the paint effect in 
multiples of its standard deviation over the five replicates.  Earlier we performed a similar analysis graphically to 
illustrate the concept of a reference distribution (see Fig. 2), but it is not actually necessary to do this graphically.  
The computed t-statistic can simply be compared with tabulated critical two-tailed t-values found in standard 
statistical tables that list them as a function of df and significance level – the complement of confidence level.   For 
this case, standard tables list the critical t-statistic for 4 df corresponding to a significance level of 0.05 (95% 
confidence) as 2.776.  If the magnitude of the average paint effect is at least 2.776 times greater than the 4 df 
estimate of the standard deviation associated with this average, then we are entitled to reject the null hypothesis of 
no significant paint effect and conclude that PSP actually does affect drag measurements, with no more than a 5% 
probability that this inference will be in error. Otherwise we are unable to reject the null hypothesis with at least 
95% confidence. (The actual PSP experiment involved seven replicates, and included a more complex array of 
subplot variable combinations, but resulted in the conclusion that no significant paint effect could be detected at the 
0.01 significance level, corresponding to a confidence level for this conclusion of at least 99%.) 

There are two schools of thought for how to assess the significance of the subplot effect and the interaction 
between the subplot and whole plot variables in a split plot design. One approach is to proceed in an analogous 
fashion to the whole-plot case.  Compute the subplot effect for each day (in this case by subtracting the average of 
the painted and clean drag measurements made at the low Mach number from the high-Mach estimate of the same 
quantity), and then average across all five days.  Take the ratio of the average of these five numbers to their standard 
deviation and compare with a critical t-statistic as before.  For the subplot/whole plot interaction (Mach/Paint), 
compute the low-Mach paint effect on each day and subtract it from the high-Mach paint effect for that day. This 
will be the interaction effect for that day. As before, average across all five days, using the standard deviation as a 
reference to compute a t-statistic that is compared with the appropriate critical t-value obtained from standard 
statistical tables. 

The problem with this approach is that there is theoretically no real variation in subplot effects from one whole 
plot block to another.  In the presence of slowly varying covariate effects we might expect the absolute level of drag 
measured at low Mach on Monday afternoon to be somewhat higher than it was on Monday morning, and similarly 
for the absolute level of drag measured at high Mach in the afternoon compared to the morning.  But changing the 
Mach number from low to high should produce the same change in drag in the afternoon as it did in the morning, 
neglecting set-point errors in Mach and ordinary random experimental error. 

If we permit the possibility of a legitimate block/Mach interaction, then the whole aerodynamic concept of Mach 
number is called into question.  No longer can we regard a given differential Mach number as the change in Mach 
that produces a given drag change.  We can only regard it as the change that produces this effect “on Monday 
afternoon,” say.  There are similar conceptual difficulties with the concept of three-way interactions among whole 
plot variables, subplot variables, and blocks. (Having questioned the validity of block/Mach interactions, it makes 
little sense to consider the interaction between this effect and paint state.) 

An alternative solution to the conceptually difficult proposition of admitting block/factor interactions is to pool 
these effects with the rest of the unexplained variance to generate a single error term upon which to base a reference 
distribution for assessing the significance both of subplot main effects and of subplot/whole plot interaction effects.  
An explained sum of squares is computed by adding the sum of squares for whole plot effects, block effects 
(replicates), subplot main effects, whole plot interactions with replicates, and subplot/whole-plot interactions.  This 
explained sum of squares is then subtracted from the total sum of squares to generate an error sum of squares.  The 
error sum of squares is divided by its associated df, which would be 2 × (r-1) for this PSP experiment, or 8 for r = 5 
replicates.  This results in an error variance estimate, the square root of which is the standard error that can be used 
to construct t-statistics for the subplot main effects and subplot/whole-plot interaction effects. 

V. Split Plot Designs for Response Surface Modeling 
The description of the PSP experiment described in the previous section reveals that restrictions on 

randomization can introduce substantial complexity into the analysis of even the most uncomplicated of 
experiments, including very simple two-level factorial experiments such as this one, with only two variables.  The 
only objective of the PSP experiment was to assess the significance of two main effects and the interaction between 
them.  Typical configuration aerodynamics experiments dominated by randomization restrictions are substantially 
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more complex than this demonstration experiment.  The PSP experiment featured only one whole plot variable and 
one subplot variable, for example, while most experiments in configuration aerodynamics will feature multiple 
whole plot (hard-to-change) variables and typically more than one subplot variable. 

Furthermore, the objectives of a typical configuration aerodynamics test are substantially more complicated than 
the PSP experiment.  Configuration aerodynamicists may be interested in assessing the significance of potentially 
subtle effects as in the PSP test, but they are also generally interested in developing response models capable of 
making reliable, high-precision response predictions for complex combinations of many whole plot and subplot 
variables.  In that process it is desirable to use objective significances tests to identify model coefficients that are too 
small to justify rejecting a null hypothesis that their effects are negligible, thereby improving the precision of model 
predictions and gaining important insights into the underlying processes. The rigorously correct reference 
distribution to use in such tests is complicated by the dual error terms of a split plot design, associated with separate 
randomization schemes for both easy-to-change and hard-to-change variables. 

There are further complications in applying response surface methods to a split plot design.  The vector of 
regression coefficients obtained in a completely randomized design is computed as follows: 

 ( ) yXXXb ′′= −1  (18) 

where y is a vector of measured responses and X is the design matrix. The design matrix is an extension of the 
standard test matrix, with rows for each data point but with columns not only for each independent variable, but for 
every term in the model being fitted to the experimental data.  Standard references provide more detail.17,21  

Equation 18 must be extended to estimate regression coefficients in a split plot design, as follows11: 

 ( ) yVXXVXb 11 −−− ′′=
1

 (19) 

where V is a variance covariance matrix that accounts for the fact that measurement pairs acquired within the same 
whole plot are correlated because they share a common error component.  Unfortunately, V depends on the variance 
across whole plots and also the covariance between measurement pairs acquired within a whole plot.  It is difficult 
to estimate either of these quantities without a level of replication that is not often practical in configuration 
aerodynamics testing. 

Notwithstanding the fact that the objectives are generally more complicated in a configuration aerodynamics 
response surface modeling experiment than they were for the relatively simple PSP test described above, for 
example, the available resources are seldom sufficient to support the level of replication employed in the PSP test, in 
which every combination of whole-plot variables was replicated five times and every combination of subplot 
variables was completely replicated within each whole plot.  In general, the validity of significance tests required in 
a rigorously correct analysis of a split plot experiment depends on a level of replication that is simply impractical in 
most large-scale configuration aerodynamics tests. 

None of the obvious alternatives are attractive. Mindful of the fact that restriction on randomization requires 
separate error variance estimates for hard-to-change and easy-to-change variables, one could simply incur the 
expense of providing the additional replication necessary to estimate these variance terms. Or one could simply 
abstain from randomization restrictions, executing every experiment as a completely randomized design no matter 
what the cost or how much trouble or extra time is involved. 

Another alternative is to recognize that a split plot design is comprised of a series of completely randomized 
designs in the subplot factors, each of which can be analyzed legitimately as a CRD without having to take into 
account restrictions on randomization. (The subplot factors are all easy-to-change, and can be completely 
randomized.) This results in separate response models for every whole plot variable combination and fails to 
quantify interactions between subplot and whole plot variables, to say nothing of the fact that whole plot main 
effects are not estimated. However, there are circumstances in which these limitations may not be very important.  
For example, it may be sufficient to separately predict forces and moments as a function of Mach number and angle 
of attack for two separate wings, without developing an integrated response model that includes a categorical wing 
variable. 

In general, however, one would prefer to develop response models that reveal main and interaction effects 
involving all of the independent variables, whether they are hard-to-change or easy-to-change.  To avoid all of the 
additional analytical complexity alluded to above, as well as the ambiguity noted in the PSP analysis about differing 
schools of thought for how to test the significance of subplot variable main effects and interactions among subplot 
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and whole plot variables, there can be a temptation to analyze the results of an experiment that has been executed 
with restrictions on randomization as if there had been no such restrictions. That is, it is always possible, whether 
rigorously correct or not, to honor the restrictions on randomization that practicality dictates during the execution of 
the experiment but then to ignore those restrictions in the analysis, treating it as a completely randomized design. 
Such an enormous reduction in analytical complexity would be expected to have associated with it some cost in the 
form of considerably reduced validity in the conclusions reached, however, the author is unaware of any prior 
explicit attempt to quantify such costs in a configuration aerodynamics experiment. The remaining sections of this 
paper describe an analysis intended to quantify such costs for the case of a specific configuration aerodynamics test 
conducted at Langley Research Center. 

VI. Quantifying the Cost of Ignoring Restrictions on Randomization 
A test conducted in the 16-Ft Transonic Tunnel at Langley Research Center featured six hard-to-change 

configuration variables and two easy-to-change variables – angle of attack and Mach number.  The configuration 
variables consisted of experimental lift augmentation devices arrayed along the leading edge of the port-side wing of 
a delta-winged vehicle.  Each could be set at a level of effectiveness between zero and 100%. 

There were a total of 52 configurations, consisting of various combinations of the six hard-to-change variables 
that were set as a face-centered central composite design (CCD) in those variables, with a half-fractional factorial 
block and eight replicated center points. The order in which the configurations were set was completely randomized.  
An identical schedule of 28 AoA/Mach combinations was executed for each of the 52 configurations, with the run 
order completely randomized separately for each configuration.  The range of interest for angle of attack was -5º to 
+15º and for Mach number it was from 0.35 to 0.80. The AoA/Mach points were arrayed as two overlapping 
orthogonally blocked central composite designs.  Both CCDs covered the same Mach range of 0.35 to 0.80.  One of 
them covered the AoA range from -5º to +5º while the other covered the AoA range from 5º to 15º.  Figure 5 shows 
the AoA/Mach inference space for this test and the sites within this space that were set identically for each lift 
augmentation configuration. Two of these AoA/Mach set points were each replicated six times to generate model-
independent estimates of pure error, and two other points were replicated twice, so there were in fact 16 unique 
AoA/Mach settings for each configuration. 

The use of dual CCDs designs to span the full AoA range of interest is an example of a common tactic employed 
at Langley Research Center to improve the fit that low-order models can provide to complex, real-world 
aerodynamic force and moment data. However, for the purpose of this investigation into the cost of ignoring 
randomization restrictions, analyzing two identical (except for range) subplot designs would double the already 
considerable number of regression computations, but would not add any more insight than considering only one of 
the subplot designs, so only the low-alpha CCD was examined in this comparison. The high-alpha CCD was 
completely randomized in exactly the same way, although in general the quality of the fits for this CCD were not as 
good as for the lower-alpha CCDs examined here, due to sever buffeting and possible shock reflection effects at the 
higher combinations of angles of attack and 
Mach number. 

A “confirmation polar” was acquired for 
each of the 52 configurations tested, consisting 
of identical AoA settings for each configuration 
but at a different Mach number, selected at 
random from the range of Mach 0.35 to Mach 
0.80.  The AoA set-points for each confirmation 
polar were acquired in random order. These 
confirmation points were not combined for 
analysis with the other points in the test plan 
but instead were held in reserve to test response 
predictions made with regression formulas 
developed from the rest of the data. 

To examine the consequences of ignoring 
randomization restrictions in this real-world 
configuration aerodynamics test, eight-factor 
response models was developed for each of the 
six stability axis forces and moments that were 
recorded. These (suspect) models were 

 
 
Figure 5. AoA/Mach points set for each of the 52 
combinations of configuration variables. Two adjacent 
central composite designs. 
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constructed ignoring the restrictions on randomization 
that were actually in play during the execution of the 
experiment.  That is, the data were analyzed as if the test 
had been executed as a completely randomized design.  
A single estimate of unexplained variance was used to 
test the significance of all regression coefficients rather 
than rigorously developing separate reference 
distributions for the hard-to-change and easy-to-change 
variables to reflect the differences in randomization 
schemes employed in the test. To the extent that such an 
analytical simplification is invalid, we would expect 
poor agreement between these models and the measured 
confirmation points. 

For each of the six forces and moments, individual 
two-factor models were also developed for each of the 
52 lift augmentation configurations – a total of 6 x 52 = 312 individual regression models. Because the AoA/Mach 
run order was completely randomized within each configuration, there were no restrictions on randomization for 
these models so that a CRD analysis was rigorously justified. We would therefore expect adequate agreement 
between these models and confirmation points acquired at the configuration for which each model was valid, as they 
would not have been biased by any failure to properly account for randomization restrictions. 

Forces and moments that were directly measured with seven confirmation points acquired with each 
configuration were compared with force/moment predictions based on the two types of regression models.  One was 
a legitimate two-factor response model that did not feature restrictions on randomization and the other was a suspect 
eight-factor response model that ignored restrictions on randomization, developed from an analysis that erroneously 
assumed a completely randomized design. 

The anticipated outcome of these comparisons was that the legitimate two-factor response model predictions 
would agree adequately with measured confirmation points because no faulty assumptions had been made about the 
randomization schedule, but that the suspect eight-factor models would predict forces and moments poorly.  The 
task would then be to quantify the bias errors introduced by ignoring restrictions on randomization, and look for any 
patterns that might reveal the conditions under which such errors might be expected to be especially large or 
possibly small enough to be neglected within the tolerance specifications of the test. 

Table 4 presents estimates of lift coefficient for the lift augmentation configuration designated 4501.  This 
configuration consisted of a prescribed subset of six lift augmentation devices in the full “on” position with the 
remaining devices in the full “off” position.  The first column of Table 4 lists the confirmation-point angles of attack 
in the randomized run order they were set. All of these points were acquired at a single Mach number.  They were 
uniformly intermingled among the 16 unique AoA/Mach combinations (Fig. 5) with 12 replicates acquired in a 
completely randomized sequence for each configuration for the purpose of developing response models. 

The second column of Table 4 lists values of lift coefficient that were measured at each confirmation point.  The 
third lists predicted values based on the two-factor (AoA/Mach) lift model constructed for this configuration without 
any restrictions on randomization.  The last column lists predicted values from the suspect eight-factor model (AoA, 
Mach, and the six configuration variables) that ignored restrictions on randomization. 

The central question is this: Is there any significant difference among the three methods of determining the lift 
coefficient for these angles of attack? Specifically, we are asking if there are any differences in the data across 
columns that are too great to attribute to ordinary chance variations in the data. 

If the seven confirmation points were simple replicates of the same AoA setting, we would use an ordinary one-
way analysis of variance to compare the variation in the data across columns with the row-to-row variation within 
each column, assumed to represent the intrinsic random error of the data.  However, the rows represent distinct AoA 
set points rather than simple replicates, so the row-wise variation reflects not only random error but also the 
substantial systematic variance attributable to AoA changes. (The row-wise variance in Table 4 is actually about 
four orders of magnitude greater than the column-wise variance.)  For this reason a two-way ANOVA was 
performed on the data from Table 4, partitioning the variance into explained components that can be attributable to 
variations across rows and across columns, and a residual, unexplained variance.  Table 5 displays the results of this 
analysis of variance. 

The first column of Table 5 lists sources of variation.  The 21 numbers comprising the data sample of Table 4 are 
not identical, implying that there is some total variance in this collection of numbers.  We know that the numbers 
vary row-wise because lift coefficient is known to change with angle of attack. So “rows” is listed as a component of 

AoA Measured 2-Factor 8-Factor 
0.0 0.0026 0.0043 0.0049 
1.0 0.0362 0.0394 0.0397 
-1.0 -0.0329 -0.0334 -0.0329 
-3.0 -0.1025 -0.1079 -0.1079 
3.0 0.1119 0.1147 0.1140 
5.0 0.1864 0.1880 0.1856 
-5.0 -0.1782 -0.1803 -0.1815 

 
Table 4. Lift coefficient confirmation points for 
configuration 4501. 
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the total variation.  We are 
unsure if there is any real 
variation across columns, but 
this is a candidate source of 
explainable variation.  There is 
also an entry in the first column 
called “Error,” which represents 
the difference between the total 
variance in the data sample and 
that which can be explained by 
row-wise and column-wise 
variations in the data.  That is, 

the “error” component of the total variance represents the “unexplained” variance in the data, presumed attributable 
to random measurement errors of unknown origin. 

The second column lists sums of squares for each component of variation.  The total SS is calculated in the usual 
way, by summing the squared values of all differences between each point and the average of these 21 numbers.  
The SS for rows is computed by adding the squared differences between each row average and the grand mean of all 
of the data, and then multiplying by the number of columns to normalize for the difference in the number of rows 
and columns.  Likewise, the SS for columns represents the sum of squared differences between each of the three 
column means and the grand mean, multiplied by the number of rows.   The error sum of squares can be computed 
by difference, by subtracting the SS for rows plus SS for columns from the total SS. 

The third column in the ANOVA table lists degrees of freedom given the mean for each variance component.  
Since there are 21 data points and one is consumed in estimating the grand mean, there are n – 1 = 20 total df.  
Likewise, there are 6 df corresponding to the seven rows and 2 df corresponding to the 3 columns.  The error df are 
computed by difference as before, subtracting the df for rows plus the df for columns from the total df. 

The fourth column in the ANOVA table lists the mean square (MS) or variance for each source.  It is simply the 
ratio of the SS to the df, obtained by dividing column 2 by column 3 in the ANOVA table. 

The fifth column, labeled “F,” is the ratio of the MS for each source of variation to the error MS.  This F-statistic 
is an indicator of signal to noise, measuring the variance of each source relative to the intrinsic unexplained variance 
in the system.  Note that the row-wise variation is 13,311 times greater than the variation that can be attributable to 
ordinary random error in the data.  There is a vanishingly small probability that so much variation could exist from 
row to row just by chance if there really were no systematic changes occurring, and this probability is listed in the 
final column of the ANOVA table as the P value.  The very high F value (or equivalently, the miniscule P value) 
reflects the fact that the lift coefficient is indeed very likely to change with angle of attack, an inference that will not 
exactly startle seasoned aerodynamicists.  Of considerably greater interest because it is not known in advance, is 
whether or not there is significant variation from column to column. The ANOVA table reveals this in the same 
way, through the magnitude of the F and P 
values for columns. 

For the data of Table 4, the column-wise 
variance is quite small – less than 10% of the 
variance attributed to ordinary chance 
variations in the data (F = 0.09).  The P value is 
corresponding large – 0.9176 – implying 
greater than a 90% probability that this small 
amount of variation could occur from column to 
column just due to random fluctuations in the 
data, even if there was no true column to 
column difference in the data. 

This finding is quite unanticipated.  It says 
that for configuration 4501, there was no 
significant difference between estimating lift 
for these angles of attack by direct 
measurement, or by either of the two response 
models!  The fact that the two-factor response 
model agreed well with the confirmation data is 
not surprising, since the two-factor model was 

Source of 
Variation SS df MS F P-value 

Rows 2.82E-01 6 4.70E-02 13211 3.37E-22 
Columns 6.15E-07 2 3.08E-07 0.09 0.9176 
Error 4.26E-05 12 3.55E-06   
Total 2.82E-01 20    
 
Table 5. Analysis of variance for lift coefficient confirmation data for 
configuration 4501. 

 
Figure 6. t-Distributions for column means, ANOVA for 
configuration 4501 lift coefficient comparisons. 
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based on a completely randomized schedule of AoA/Mach 
set-points acquired within a fixed configuration. No 
restrictions on randomization were in play so none were 
ignored.  However, the eight-factor model was developed 
as if the experiment had been executed as a completely 
randomized design, completely ignoring the restrictions 
on randomization that were dictated by the hard-to-change 
nature of the configuration variables.  A single reference 
distribution was used to test the significance of regression 
coefficients for both the hard-to-change variables and the 
easy-to-change variables, notwithstanding the fact that 
differences in randomization schemes should have 
necessitated different reference distributions for these two 
types of variables. 

Figure 6 displays 12 df t-distributions of sample means (reflecting the error term from ANOVA Table 5), 
centered on the normalized column means for the data in Table 4.  This is a graphical representation of the analysis 
of variance which illustrates clearly why, given the dispersion in the unexplained variance, it is not possible to 
resolve with high confidence any real differences in the means of these distributions. 

A similar analysis of variance was performed to compare how predicted lift coefficients compared with 
measured lift confirmation points for all of the 52 configurations.  Table 6 displays the confirmation data for 
configuration 4502, for example, and Table 7 presents the corresponding analysis of variance. 

The ANOVA for configuration 4502 differs from the configuration 4501 ANOVA in one important way.  The 
significance of the row factor (AoA) is as unambiguous (and as uninteresting) for configuration 4502 as it was for 
configuration 4501 – astronomical F and miniscule P leave little doubt that changes in AoA cause changes in lift.  
But unlike configuration 4501, the column factor for configuration 4502 is also significant.  Note that the P-value 
for columns is very small for configuration 4502.  This means that the probability is very small that a column-wise 
variation as large as the one that was observed could be attributed to chance variations in the data if there was no 
real cross-column effect in play. 

The inference we draw from the significance of the column-wise variation is that at least one of the three 
columns in Table 6 differs from the other two, and possibly all three differ from each other.  The former case is in 
fact the result we have been anticipating.  We expect similar results between the measured confirmation points and 
lift predictions made with a reliable two-factor model that does not ignore restrictions on randomization.  We also 
expect the eight-factor model predictions to be biased due to model terms that were either erroneously retained or 
erroneously rejected during the model building process, because the analysis was based on an improper assumption 
of a completely randomized design.  That is, we expect the eight-factor model to be “the odd man out.” 

Again the actual result was unanticipated.  Figure 7 displays 12 df t-distributions of sample means (reflecting the 
error df from ANOVA Table 7), centered on the normalized column means for the configuration 4502 data in 

Table 6.  This figure illustrates that the degree 
of dispersion in the data makes it difficult to 
resolve a significant difference between the 
eight-factor model predictions and the 
measured confirmation points, but even given 
that dispersion,  it is easy to resolve a 
difference between the two-factor model 
predictions and either the measured results or 
the (suspect) eight-factor predictions. 

The ANOVA for configuration 4501 
implied that the suspect eight-factor model that 
failed to account for restrictions on 
randomization did just well at predicting lift as 
the rigorously valid two-factor model for which 
there were no restrictions on randomization.  
The ANOVA for configuration 4502 suggested 
that the suspect model did an even better job of 
predicting lift than the ostensibly reliable two-
factor model, a surprising result indeed. 

AoA Measured 2-Factor 8-Factor 
5.0 0.1801 0.1754 0.1766 
1.0 0.0373 0.0352 0.0385 
-1.0 -0.0320 -0.0360 -0.0320 
-3.0 -0.1009 -0.1088 -0.1045 
0.0 0.0040 0.0003 0.0039 
3.0 0.1085 0.1052 0.1076 
-5.0 -0.1806 -0.1821 -0.1779 

 
Table 6. Lift coefficient confirmation points for 
configuration 4502. 

 
 
Figure 7. t-Distributions for column means, ANOVA for 
configuration 4502 lift coefficient comparisons. 
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To investigate this further, 
we framed the confirmation 
analysis as a Bernoulli 
process in which each two-
way ANOVA represented a 
“trial.”  ANOVA results with 
P-values for columns greater 
than 0.05 were defined as 
“successes.” That is, we 
defined as “successes” those 
outcomes for which the 
column variation was so small that there was more than a 5% chance that it was simply due to chance variations in 
the data.  In such cases it could not be said (with at least 95% confidence) that there was any true difference between 
estimating lift by a two-factor model, by an eight-factor model, or by direct measurement. 

ANOVA results with P-values for columns less than 0.05 were defined as “failed” Bernoulli trials.  For these 
failed trials, there was less than a 5% chance that column variation could simply be due chance, and thus a true 
column difference could be inferred with at least 95% confidence.  That is, a failed trial was one in which either of 
the models (or both of them!) failed to predict the confirmation data within experimental error, or that a significant 
difference could be detected between the two-factor and the eight-factor model predictions. 

There were a total of 52 trials, one for each of the confirmation polars acquired at each configuration.   A crucial 
question that must be answered before this analysis can proceed is as follows: How many successes would we have 
to see in 52 trials to be convinced (at some prescribed level of confidence) that there is, say, a 95% probability of 
success in any one trial?  Note that the answer is not anything so simple as “0.95 x 52,” as this calculation would 
only the provide the most likely outcome under the prescribed assumption of a 95% success probability for each 
trial.  This is rather analogous to asking how many times in a hundred trials that a tossed coin would have to come 
up “heads” to convince us that the coin is fair.  The most likely outcome for a fair coin is 50 heads in 100 trials, but 
surely we would not assert that the coin is weighted if heads came up 49 times in an actual 100-toss examination.  
On the other hand, if heads came up only one time in 100 tosses, this would be interpreted as strong evidence that 
the coin was weighted.  Somewhere between these extremes is a minimum number of heads that we would expect to 
see if the coin is fair. This is known as the Critical Binomial Number, CBN, which is available in standard statistical 
tables, or via the CRITBINOM worksheet function in the Excel spreadsheet, for example.  (For 99% confidence, the 
CBN for the coin toss problem is 38 heads, incidentally, and by symmetry there is an upper limit of 62 heads, 
corresponding to 38 tails.  That is, a fair coin would be expected to produce between 38 and 62 heads for 99% of the 
100-toss tests that were administered to it.) 

 For our 52-trial test, the CBN for 52 trials with a per-trial success probability of 0.95 is 45 at the 0.01 
significance level.  That is, if the probability of success for any one trial is at least 95%, we would expect to see 45 

or more successes in 52 trials at least 99% of 
the time. Note that we explicitly do not 
require a 100% success rate in a 52-trial test, 
because the assumed probability of success in 
any one trial is 95%, not 100%.  The assumed 
95% success rate actually implies an average 
of one failure in every 20 trials.  We can 
accept up to 52 – 45 = 7 failures in 52 trials 
before we declare that the per-trial success 
probability must have been less than 95%. 

For each of the six stability axis forces 
and moments, 52 analyses of variance were 
performed as described above.  Figure 8 
compares the number of failures with the 
seven-failure criterion for rejecting the null 
hypothesis that both models produce the same 
result as a direct measurement.  This figure 
reveals that on average, both models agree 
with direct measurement within experimental 
error 95% of the time for four of the six 

Source of 
Variation SS df MS F P-value 

Rows 2.66E-01 6 4.44E-02 24491 8.30E-24 
Columns 6.08E-05 2 3.04E-05 16.8 3.35E-04 
Error 2.18E-05 12 1.81E-06   
Total 2.67E-01 20    

 
Table 7. Analysis of variance for lift coefficient confirmation data for 
configuration 4502. 

 
 
Figure 8. Critical Binomial Analysis applied to ANOVA tests 
of null hypothesis that both models agree with confirmation 
data.  Seven or more failures in 52 trials (dashed line) are 
required to reject this hypothesis. 
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stability axis responses.  That is, for lift, drag, 
pitching moment, and rolling moment, the 
differences between the three column means 
in the ANOVA that corresponded to the two 
regression models (two-factor and eight-
factor) and the direct measurement of 
confirmation points, were all small relative to 
the uncertainty in estimating the means.  This 
is the situation illustrated by Fig. 6.   
However, there were significant differences 
for yawing moment and side force. 

The yawing moment and side force 
discrepancies are attributed to poor signal-to-
noise ratio, as indicated in Fig. 9.  This figure 
displays the maximum dynamic range of the 
52 confirmation data sets experienced for each 
force and moment, expressed as a multiple of 
the precision tolerance specified during the 
design of the experiment.  Figure 10 displays 
the precision tolerances for each of the forces 
and moments. The precision tolerance 
specified for side force was ±50 counts, for example, but the maximum dynamic range encountered in the 
confirmation runs was only 37 counts!  Likewise, the maximum yawing moment dynamic range was just over twice 
the minimum specified precision tolerance, which is not really adequate to develop a reliable regression model. 

The poor signal-to-noise ratio for the lateral/stability responses is attributed to the fact that for this portion of the 
test, there were no sideslip angles set.  The configuration variables on the port-side wing generated some small 
differential lift that resulted a slight rolling moment and produced some second-order coupling into yaw and side 
force.  But the primary effect of these lift augmentation devices at zero sideslip was on the axial responses. 

The comparison of differences between column means that the ANOVA process facilitates, as illustrated in Figs. 
6 and 7, can be quite instructive.  There were a total of five confirmation data sets out of 52 that revealed significant 
differences among the lift estimates made by direct measurement or by the two response models.  While this was 
fewer than the seven failures that would have been necessary to reject the hypothesis that agreement occurred 95% 
of the time, the fact that there were such cases provides an opportunity for insights into what may have caused them. 

Figure 7 represents one of the five configurations where poor agreement was observed for lift.  Figure 11 
presents the other four cases.  Considering Figs. 7 and 11 together, we see that in two of the five cases of poor 
agreement – configurations 4517 and 4521 – the models agreed with each other but not with the confirmation data.  
This suggests a fitting error of some kind that was common to both configurations, or possibly one or more bad data 
points in the two confirmation data sets. 

The other three cases of poor agreement – 
configurations 4502, 4507, and 4546 – all 
involved situations in which the two-factor 
model was “voted out” by the good agreement 
between the measured data and the results of the 
eight-factor predictions.  Conspicuous by its 
absence is any case in which the suspect eight-
factor model for lift was the “odd man out.”  
The only time the eight-factor model 
predictions failed to agree with the data was 
when the data differed from both the assumed-
reliable two-factor model as well as the suspect 
eight-factor model. 

A failure to properly account for 
randomization occurred as a result of the eight-
factor models being analyzed as if their data had 
been generated in a completely randomized 
design, when in fact there were significant 

 
Figure 9. Dynamic range of confirmation points as multiple 
of error tolerance levels. Very little signal-to-noise available 
for yaw and side force. 

 
Figure 10. Tolerance requirements defining adequacy of 
response models and serving as a key test exit criteria. 
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restrictions on randomization.  However, no evidence can be seen in Figs. 7 and 11 that this distinguished the eight-
factor models from the two-factor models that were legitimately analyzed as CRDs, or from the direct measurements 
of lift.   For the four forces and moments for which there was adequate dynamic range to construct reliable models, 
the critical binomial analysis of the ANOVA results suggest that ignoring restrictions on randomization in this 
experiment did not result in any detectable penalty in the predictive capability of the response models. 

We established early in the paper that persisting systematic variations during the execution of an experiment 
generate correlated experimental errors, and that this correlation results in a bias in variance estimates that could 
either reduce or inflate the dispersion of the reference distributions used to test the significance of candidate 
regression coefficients in a proposed response surface model.  (We also established that systematic errors introduce 
bias into the estimates of sample means as well as variances, so the reference distribution could be biased in location 
as well as dispersion.) 

We described how randomizing the set point order restores the random sampling hypothesis by disrupting the 
correlation in experimental errors that is responsible for much of this mischief, but that hard-to-change variables 
introduce certain restrictions on randomization that would presumably result in a biased estimate of residual 
variance if not properly taken into account.  This suggests that a failure to account for restrictions on randomization 
would result in erroneous decisions to retain or reject certain terms in the regression models.  This should then bias 
those models in such a way that they would perform relatively poorly as predictors of independent confirmation data 
points, compared to models developed under circumstances in which no restrictions on randomization were in play.  
We can test this directly for each response variable by comparing the residual variance of the confirmation points for 
both the two-factor and eight-factor models.  If our failure to account for restrictions on randomization biased the 
eight-factor models, their residuals should be different than the two-factor models which did not entail any 
randomization restrictions. 

 
 
Figure 11. t-Distributions for column means, ANOVA for configurations with significant differences for 
lift coefficient. 
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A standard F test was employed to test 
the difference in confirmation point 
residuals between the two-factor and eight-
factor models.  This test is largely 
redundant to the ANOVA tests previously 
described, but it has the advantage of 
generating a specific probability that the 
two models produced residuals of the same 
magnitude. The complement of this 
probability describes how likely it is that 
ignoring the restrictions on randomization 
in a test like this one would result in any 
significant bias in the model predictions. 
These latter probabilities are presented in 
Fig. 12, which show that except for side 
force (with its extraordinarily low signal-
to-noise ratio), the probability that ignoring 
randomization restrictions would bias the 
model predictions is comfortably below the 
0.05 level necessary for us to assert with at 
least 95% confidence that restrictions on 
randomization – at least for this test – can 
be safely ignored. 

The analyses described above all indicate that the accuracy of the two models – defined in terms of their ability 
to estimate measured responses – is equivalent.  
Figure 13 reveals that the precision of the eight-
factor models that ignored restrictions on 
randomization is actually superior to that of the 
two-factor models.  Equation 16 reveals why 
this is so.  Even though the eight-factor models 
featured more terms than the two-factor models 
by almost a factor five on average (Fig. 14), the 
number of data points available to assess the 
eight-factor regression coefficients was larger 
by a factor of 52 than for the two-factor models.  
The p/n ratio in Eq. 16 was therefore roughly an 
order of magnitude smaller for the eight-factor 
models that for the two-factor models.  The 
widths of the precision intervals are 
proportional to the square root of the prediction 
variance, which explains the approximate 
factor-of-three improvement in precision 
revealed in Fig. 13. 

 

VII. Discussion 
The importance of randomizing run order as a quality assurance tactic to secure the random sampling hypothesis 

is not in question.  Nor has it been the intent of this paper to suggest that restrictions on randomization are generally 
irrelevant.   The necessity for split plot designs and the attendant complexity in analyzing them has been recognized 
since the first applications of designed experiments to agricultural experiments almost a hundred years ago.  
However, the results of this paper do suggest that at least under certain circumstances, the benefits to be derived by a 
rigorous split plot analysis of an experiment executed with restrictions on randomization do not justify the 
considerable added complexity of such an analysis. It is interesting, therefore, to contemplate what conditions 
require such rigor, and under what other circumstances it might be reasonable to simplify the analysis by ignoring 

 
Figure 12. Result of F test comparing variance in 
confirmation-point residuals for two-factor and eight-factor 
response models.  No significant difference (0.05 level) except 
for side force. 

 
Figure 13. Comparisons of prediction precision for two-factor
and eight-factor models.  All models well within tolerance,
but eight-factor models featured higher precision than two-
factor models. 
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the randomization restrictions and proceeding as if the experiment had been conducted as a completely randomized 
design. 

Several features of this experiment may help to explain why the restrictions on randomization had such a 
negligible practical effect.  One may have been the relatively large number of whole plot blocks. 

Restrictions on randomization result in a confounding of whole plot variable effects with block effects unrelated 
to the independent variables.  In the PSP experiment used to introduce the basics of split plot designs, for example, 
replication was necessary to introduce enough error df to properly assess the inherent variance in the experimental 
results.  In an unreplicated experiment, the difference between the drag measured with a painted model and the drag 
measured with a clean model would have been attributable to two sources, the effect of the paint, and the effect of 
any other change to the measurement system, data system, apparatus, or facility that may have occurred between the 
time of the first measurement and the time of the second.  This latter source is what is meant by the term, “block 
effect,” and refers in this case to changes of unknown origin that result in a systematic difference in response 
measurements from one block of time to the next. 

Replicating the PSP experiment (and randomizing the order that the pained and clean configurations were run) 
forced cancellation among much of the block effects. In general, the impact of restricted randomization is greatest 
when the opportunity for block effects to cancel is smallest.  In the current experiment, there were 52 blocks in 
which whole plot variable levels were set in random order. The fact that configuration variables were randomly 
assigned to such a large number of whole plot blocks may have been responsible for diminishing the confounding of 
blocks effects with whole plot variable effects. 

The general stability of the facility may have also contributed to the negligible effect of ignoring the split plot 
structure of this experiment. Absent significant temporal block effects, there is a reduced need to randomize 
altogether.  Under such circumstances, restrictions on randomization become even less relevant. 

Another possible reason that restrictions on randomization had such a negligible effect in this experiment may 
have been the fact that the response variables (forces and moments) were dominated by the subplot variable effects – 
particularly angle of attack – and were influenced only slightly by the whole plot (configuration) variables.  The 
regression coefficient for the first order AoA term for lift was more than three orders of magnitude greater than the 
largest configuration variable coefficient, for example. 

In the limiting case in which the whole plot variables could be imagined to have exerted no influence 
whatsoever, this experiment would reduce to a simple randomized complete block design (RCBD).  In such a 
design, blocking on replicates would improve the precision of the result by removing block effects from the 
unexplained variance, but no other special analysis would be needed to account for restrictions on randomization.   
For practical purposes, because of the enormous difference in the relative influence of the whole plot and subplot 
factors in this experiment, it was much more in the nature of a randomized complete block design than a split plot 
design. 

Related to the relatively subtle effect of the whole plot variables in this experiment is the fact that a failure to 
properly account for restrictions on randomization is expected to bias both the location and the dispersion of 
reference distributions used to test the significance of candidate regression coefficients.  Coefficients that are located 
far enough away from zero to be resolved when the reference distributions are properly constructed may be rejected 
in the response model building process, and likewise insignificant coefficients may be erroneously retained.   
However, the null hypotheses for regression coefficients that are associated with dominant factors in a high-
precision experiment are very likely be properly rejected even if their corresponding reference distributions are 
slightly broadened, narrowed, or shifted.  For example, it would be hard to imagine any practical situation in which 
the coefficient of the first-order AoA term in a lift response function would be erroneously regarded as insignificant 
simply because a subtle restriction on randomization was not rigorously taken into account. 

Another potential contributor to the apparent irrelevance of restrictions on randomization in this experiment may 
have been the high potential parameter count resulting from the combination of model order and number of factors.  
A full third-order model in eight independent variables would feature 165 possible parameters, the coefficients of 
most of which would be located too close to zero to include in a reduced model.  If a failure to properly account for 
restrictions on randomization resulted in slight errors in the variance or the mean of the reference distributions for 
these coefficients, some would be erroneously rejected while others would be erroneously retained.  The small 
number of large coefficients driving the response will not be affected by such subtleties, but it is possible in such 
circumstances that if a large number of small coefficients were improperly identified as significant or insignificant, 
there could be a certain canceling of the effects of such inference errors.  This may have occurred in this test, in 
which only about 10% to 25% of all the possible coefficients were judged to be significant, depending on the 
response variable being modeled.  A model in fewer variables may have been more problematic. (A full third order 



 
American Institute of Aeronautics and Astronautics 

 

25

model in only two variables has a maximum 
of only 10 parameters, for example, compared 
to 165 if there were eight factors as in this 
experiment.) 

Yet another possible explanation for the 
fact that restrictions on randomization seemed 
so unnecessary in this test may have been the 
high precision of the measurement 
environment.  In an extremely precise 
measurement environment such as the one in 
which this test was conducted, the reference 
distributions will be very narrow.  A given 
percentage error in characterizing their 
dispersion or location will translate into a 
relatively small absolute effect that will 
impact only a relative few coefficients, which 
themselves would have to be relatively small 
to be adversely impacted.  Related to this is 
the possibility that split-plot analytical 

corrections may be less important when error tolerance levels are generous compared to the random and systematic 
components of unexplained variance, as was the case in this experiment. 

Another aspect of this experiment is the fact that eight-factor models turned out to have so many residual lack of 
fit degrees of freedom compared to the two-factor models.  While Fig. 14 indicates that there were on the order of 
five times as many significant terms in the eight-factor models as in the two-factor models, Fig. 15 shows that the 
two-factor models required a much greater percentage of the available terms than the eight-factor models, and in that 
sense had to “work harder” to achieve a good fit to the data.  The eight-factor models may have performed enough 
better than the two-factor models on this account to compensate at least partially for small prediction biases that 
could have been introduced by erroneously rejecting or retaining small regression coefficients because of a failure to 
properly account for restrictions on randomization.  Thus, it is possible that the failure to randomize actually had a 
somewhat great effect that these analyses revealed. 

A number of factors have been discussed which may explain why a failure to rigorously account for restrictions 
on randomization apparently had such a small impact in this particular experiment.  No representation is being made 
that randomization restrictions are generally 
unimportant, or that configuration 
aerodynamicists can be forever liberated from 
the responsibility for taking such restrictions 
into account.  On the other hand, many of the 
features of this experiment which may have 
contributed to the reduced need to account for 
randomization restrictions are common in 
configuration aerodynamics, including high 
precision in the measurement environment, 
large numbers of independent variables, and 
the potential to randomize whole plot 
variables across many blocks. There is a 
tradeoff between quality and productivity 
inherent in split-plot designs, and ultimately 
the decision for how rigorously to account for 
restrictions on randomization must be based 
on a combination of experience and judgment. 

 
 

 
Figure 14. Complexity of two-factor and eight-factor response 
surface models revealed by number of significant terms in 
each  model. 

 
Figure 15. Percentage of total available terms (8 for two-
factor models and 157 for eight-factor models) required for 
best fit of data. 
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VIII. Concluding Remarks 
Bias errors are introduced into estimates of sample means and variances by slowly varying covariate effects that 

impact the intrinsic quality of experimental results as well as the ability to accurately assess quality.  In an MDOE 
experiment, decisions to retain or reject individual terms in a regression response model depend on the magnitude of 
the corresponding coefficient relative to the variance in estimating it, both of which are adversely impacted by 
covariate effects. 

Failure to properly identify significant terms in a response model adversely impacts the accuracy of system 
response predictions, and incorrectly portrays the underlying physics.  Randomizing the set point order defends 
against these effects but restrictions on randomization caused by hard-to-change variables complicate such quality 
assurance tactics.  Certain features of experimentation under restrictions on randomization have been considered in 
this paper.  The principal conclusions are summarized as follows: 
 

• Persisting systematic variations that occur during the execution of an experiment generate correlated 
experimental errors by upsetting the random sampling hypothesis stating that all measurement errors are 
independent. 

 
• Correlated experimental errors prevent sample statistics such as means and variances from serving as 

unbiased estimators of the corresponding population parameters. 
 

• Reference probability distributions centered on zero with a variance reflecting experimental uncertainty are 
used to objectively assess the significance of regression coefficients in the construction of regression 
equations used to fit experimental data to a mathematical response model. 

 
• Biases in the location and dispersion of reference distributions can result in model terms that are either 

erroneously retained or erroneously rejected in the model building process, producing a bias in response 
predictions made with the resulting model. 

 
• Randomizing the run order of a test matrix is an effective quality assurance tactic that restores the random 

sampling hypothesis by disrupting the correlation in experimental errors that occurs when there is a 
significant component of systematic unexplained variance is in the data. 

 
• Hard-to-change variables commonly encountered in configuration aerodynamics introduce certain 

restrictions on randomization in that cause them to have to be randomized according to a different schedule 
that easy-to-change variables in a structure referred to as a split plot design. 

 
• In a configuration aerodynamics test, blocks of time in which easy-to-change variables are completely 

randomized while hard-to-change configuration variables are held constant are called whole plots, and 
smaller blocks of time within each whole plot in which easy-to-change variables are set are called subplots.  
These terms reflect the agricultural heritage of the method. 

 
• The two randomization schemes of a split plot design result in two types of unexplained variances and thus 

two reference distributions for testing the significance of whole plot variable coefficients on the one hand, 
and coefficients for subplot variables and interactions between subplot and whole plot variables on the 
other. 

 
• The resulting analysis of a split plot design is very complicated and there is no unanimous agreement even 

among experts on how to proceed with some of the finer points of such an analysis, including how to 
quantify the variance associated with subplot main effects and subplot/whole plot interaction effects in the 
absence of block-factor interactions.  Variance covariance matrices are also significantly complicated by 
split plot designs, making the estimation of prediction variances and associated precision intervals 
extremely complex. 

 
• The complexity of a split plot analysis can be avoided by treating the results as if they had been acquired in 

a completely randomized design (CRD). 
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• The great simplicity that would be introduced by eliminating the complexity of a split plot analysis of data 
acquired under restrictions on randomization is presumed to have associated with it some significant cost in 
the form of reduced validity that this study sought to characterize. 

 
• A specific configuration aerodynamics test executed at Langley Research Center as a split plot design with 

the usual restrictions on randomization was analyzed using methods that respected these restrictions, and 
methods that ignored them, yielding the following unanticipated results:  

 
o No significant differences were detected between the prediction accuracy of response models that 

respected restrictions on randomization and those that ignored them. 
 
o The precision of the response models that ignored restrictions on randomization was actually 

higher than the precision of the response models that respected the restrictions, due to the 
significantly greater volume of data that could be utilized in each analysis when randomization 
restrictions were ignored. 

 
• The fact that no significant cost seems to have been attached in this test to the substantial simplicity in 

analysis afforded by ignoring the restrictions on randomization is attributed to a number of possible factors 
that were in play, including the following: 

 
o The relatively large number of whole plot blocks in this experiment that were executed in random 

set-point order, which provided ample opportunity for whole plot block effects to cancel.   
 

o The general stability of the facility that for this test may have minimized the general need for 
quality assurance tactics such as randomization and the further need to properly account for 
restrictions on randomization. 

 
o The dominant role of the subplot effects relative to the whole plot effects in this test, which may 

have resulted in a close approximation to a randomized complete block design in which no special 
analysis is needed to account for restrictions on randomization.    

 
o The existence of numerous dominant terms in the response models whose coefficients would be 

unambiguously resolved from zero even if a failure to account for restrictions on randomization 
introduced some bias in the dispersion and location of the reference distributions. 

 
o The high potential parameter counts in the response functions of this experiment that were due to 

large combinations of model order and number of factors, that may have resulted in the 
cancellation of potential bias errors attributable to erroneously rejecting or retaining large numbers 
of small candidate terms in the regression model because of a failure to account for restrictions on 
randomization. 

 
o The high precision of the measurement environment that would have had associated with it very 

narrow reference distributions for which a bias in either the location or dispersion induced by a 
failure to account for restrictions on randomization would have resulted in acceptance/rejection 
decision errors for a relatively small number of low-magnitude regression coefficients. 

 
o The relatively generous error tolerance levels compared to the random and systematic components 

of unexplained variance, which may have rendered split-plot analytical corrections less important 
than if extraordinarily tight error tolerances had been specified. 

 
o The relatively large number of available lack of fit degrees of freedom that may have resulted in 

improvements in the fit of the response models that partially compensated for some amount of bias 
error caused by ignoring restrictions on randomization. 

 
• No representation is made that randomization restrictions are generally unimportant, but many of the 

features which may have contributed to the reduced need to account for randomization restrictions in this 
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experiment are common in configuration aerodynamics, including high precision in the measurement 
environment, large numbers of independent variables, and the potential to randomize whole plot variables 
across many blocks.   

 
• There is a tradeoff between quality and productivity inherent in split-plot designs, and ultimately the 

decision for how rigorously to account for restrictions on randomization must be based on a combination of 
experience and judgment. 
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